skip to main content


Search for: All records

Creators/Authors contains: "Coelho, J.A.B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype. 
    more » « less
  2. Abstract The centrality of heavy-ion collisions is directly related to the created medium in these interactions. A procedure to determine the centrality of collisions with the LHCb detector is implemented for lead-lead collisions at √ s NN = 5 TeV and lead-neon fixed-target collisions at √ s NN = 69 GeV. The energy deposits in the electromagnetic calorimeter are used to determine and define the centrality classes. The correspondence between the number of participants and the centrality for the lead-lead collisions is in good agreement with the correspondence found in other experiments, and the centrality measurements for the lead-neon collisions presented here are performed for the first time in fixed-target collisions at the LHC. 
    more » « less
  3. Abstract The identification of charm jets is achieved at LHCb for data collected in 2015–2018 using a method based on the properties of displaced vertices reconstructed and matched with jets. The performance of this method is determined using a dijet calibration dataset recorded by the LHCb detector and selected such that the jets are unbiased in quantities used in the tagging algorithm. The charm-tagging efficiency is reported as a function of the transverse momentum of the jet. The measured efficiencies are compared to those obtained from simulation and found to be in good agreement. 
    more » « less
  4. Abstract The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber (LArTPC) that was constructed and operated in the CERN North Area at the end of the H4 beamline. This detector is a prototype for the first far detector module of the Deep Underground Neutrino Experiment (DUNE), which will be constructed at the Sandford Underground Research Facility (SURF) in Lead, South Dakota, U.S.A. The ProtoDUNE-SP detector incorporates full-size components as designed for DUNE and has an active volume of 7 × 6 × 7.2 m 3 . The H4 beam delivers incident particles with well-measured momenta and high-purity particle identification. ProtoDUNE-SP's successful operation between 2018 and 2020 demonstrates the effectiveness of the single-phase far detector design. This paper describes the design, construction, assembly and operation of the detector components. 
    more » « less
  5. Abstract The first search for the doubly heavy baryon and a search for the baryon are performed using collision data collected via the experiment from 2016 to 2018 at a centre-of-mass energy of , corresponding to an integrated luminosity of 5.2 . The baryons are reconstructed via their decays to and . No significant excess is found for invariant masses between 6700 and 7300 , in a rapidity range from 2.0 to 4.5 and a transverse momentum range from 2 to 20 . Upper limits are set on the ratio of the and production cross-section times the branching fraction to ( ) relative to that of the ( ) baryon, for different lifetime hypotheses, at 95% confidence level. The upper limits range from to for the ( ) decay, and from to for the ( ) decay, depending on the considered mass and lifetime of the ( ) baryon. 
    more » « less